
BERNOULLI’S EQUATION 

AND IT’S APPLICATION



(picture 1)

Consider the flow through a nonuniform pipe in the time ∆𝑡, as in 

(picture 1). The force on the lower end of the fluid is 𝑝1𝐴1, where 𝑝1 is 

the pressure at the lower end. The work done on the lower end of the 

fluid by the fluid behind it is:

A fluid flowing through a 

constricted pipe with streamline 

flow. The fluid in the section with 

a length of ∆𝑙1 moves to the 

section with a length of ∆𝑙2.

The volumes of fluid in the two 

sections are equal.

𝑊1 = 𝐹1∆𝑙1 = 𝑝1𝐴1∆𝑙1 ∆𝑉 = 𝐴1∆𝑙1 𝑊1 = 𝑝1∆𝑉

In a similar manner, the work done on the fluid on the upper portion 

in the time ∆𝑡 is:

𝑊2 = −𝐹2∆𝑙2 = −𝑝2𝐴2∆𝑙2 𝑊2 = −𝑝2∆𝑉

The volume is the same because, by the equation of continuity, the 

volume of fluid that passes through 𝑆1 in the time ∆𝑡 equals the volume 

that passes through 𝑆2 in the same interval. The work 𝐴2 is negative 

because the force on the fluid at the top is opposite its displacement. 

The resultant work done by these forces in the time ∆𝑡 is:

𝑊 = 𝑝1∆𝑉 − 𝑝2∆𝑉… . (1)

BERNOULLI'S EQUATION

(where ∆𝑉 is the volume of the lower blue region in the picture)

∆𝑉 = 𝐴2∆𝑙2

As a fluid moves through a pipe of varying cross section and elevation, the pressure changes along the pipe. In 

1738 the Swiss physicist Daniel Bernoulli (1700–1782) derived an expression that relates the pressure of a fluid 

to its speed and elevation. Bernoulli’s equation is a consequence of energy conservation as applied to an 

ideal fluid. In deriving Bernoulli’s equation, we again assume the fluid is incompressible (density is constant), 

nonviscous (no internal friction), and flows in a nonturbulent, steady-state manner (velocity, density, and pressure 

at each point in the fluid don’t change with time).
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Part of this work goes into changing the fluid’s kinetic energy, and part goes into changing the gravitational 

potential energy. If ∆𝑚 is the mass of the fluid passing through the pipe in the time interval ∆𝑡, then the change 

in kinetic energy of the volume of fluid is: ∆𝐸𝐾 =
1

2
∆𝑚 𝑣2

2 − 𝑣1
2 …..(2) 

The change in the gravitational potential energy is: ∆𝐸𝑃 = ∆𝑚𝑔 ℎ2 − ℎ1 ……(3)

Daniel Bernoulli

Because the resultant work done by the fluid on the segment of fluid shown in picture1 changes the kinetic 

energy and the potential energy of the nonisolated system, we have: 𝑊 = ∆𝐸𝐾 + ∆𝐸𝑃

Substituting expressions for each of the terms gives: 𝑝1∆𝑉 − 𝑝2∆𝑉 =
1

2
∆𝑚 𝑣2

2 − 𝑣1
2 + ∆𝑚𝑔 ℎ2 − ℎ1

This is Bernoulli’s equation, often expressed as:

Bernoulli’s equation states that the sum of the external pressure p, hydrodynamic 

pressure (the kinetic energy per unit volume)
𝟏

𝟐
𝝆𝒗𝟐, and hydrostatic pressure ( the 

potential energy per unit volume) 𝝆𝒈𝒉 has the same value at all points along a 

streamline.

p+𝝆𝒈𝒉 +
𝟏

𝟐
𝝆𝒗𝟐 = 𝒄𝒐𝒏𝒔𝒕

If we divide each term by ∆𝑉 and recall that 

𝜌 = Τ∆𝑚 ∆𝑉, this expression becomes

Rearrange the terms as follows: 𝒑𝟏 + 𝝆𝒈𝒉𝟏 +
𝟏

𝟐
𝝆𝒗𝟏

𝟐 = 𝒑𝟐 + 𝝆𝒈𝒉𝟐 +
𝟏

𝟐
𝝆𝒗𝟐

𝟐

𝑝1 − 𝑝2 =
1

2
𝜌 𝑣2

2 − 𝑣1
2 + 𝜌𝑔 ℎ2 − ℎ1



An important consequence of Bernoulli’s equation can be demonstrated by considering picture 2, which shows 

water flowing through a horizontal constricted pipe from a region of large cross-sectional area into a region of 

smaller cross- sectional area. Because the pipe is horizontal ℎ1 = ℎ2 then:

applied to points 1 and 2 gives

𝒑𝟏 + 𝝆𝒈𝒉𝟏 +
𝟏

𝟐
𝝆𝒗𝟏

𝟐 = 𝒑𝟐 + 𝝆𝒈𝒉𝟐 +
𝟏

𝟐
𝝆𝒗𝟐

𝟐

𝒑𝟏 +
𝟏

𝟐
𝝆𝒗𝟏

𝟐 = 𝒑𝟐 +
𝟏

𝟐
𝝆𝒗𝟐

𝟐 …(𝟐)

Because the water is not backing up in the pipe, its speed 𝑣2 in the constricted region must be greater than its 

speed 𝑣1 in the region of greater diameter. From Equation (2), we see that 𝑝2 must be less than 𝑝1 because 

𝑣2 > 𝑣1 This result is often expressed by the statement that swiftly moving fluids exert less pressure than

do slowly moving fluids..

(picture 2)



The shape of a wing (picture 4) forces air to travel faster over the 

curved upper surface than it does over the flatter lower surface.

According to Bernoulli’s equation, the pressure above the wing is 

lower (faster moving air), while the pressure below the wing is 

higher (slower moving air).

The wing is lifted upward due to the higher pressure on the 

bottom of the wing.

► APPLICATION OF BERNOULLI'S EQUATION

A person who stands near a railway (picture 3) feels like falling 

into it when suddenly a train moves with a high speed passes 

him. It is because the velocity of air in front of him increases.

According to Bernoulli’s Principle, the pressure of the moving 

air decreases as the speed of the air increases. The higher 

atmospheric pressure behind pushes him forward.

Bernoulli’s equation can be seen in various places around us. Here are some example of  Bernoulli’s equation:

(picture 3)

(picture 4)



TORRICELLI'S THEOREM (FLOW OF A LIQUID FROM A HOLE)

Let us apply Bernoulli's equation to the flow of a liquid from a small hole in a wide open vessel. Let us separate 

in the liquid a flow tube having the open surface of the liquid in the vessel as one of its cross sections and the 

hole through which the liquid flows out as the other one (picture 5). For each of these sections, the velocity

and the height above an initial datum level may be considered the same.

Consequently, we can apply. 𝑝1 + 𝜌𝑔ℎ1 +
1

2
𝜌𝑣1

2 = 𝑝2 + 𝜌𝑔ℎ2 +
1

2
𝜌𝑣2

2 …(1)

obtained on this assumption, to these sections. 

Further, the pressure in both sections is atmospheric and therefore the same. 

𝑝1 = 𝑝2 = 𝑝0

In addition, the velocity of the open surface in the wide vessel can be assumed 

to equal zero. 𝑣1 = 0

𝑝0 + 𝜌𝑔ℎ1 = 𝑝0 +
1

2
𝜌𝑣2 + 𝜌𝑔ℎ2

With a view to everything said above, equation (1) can be written in the following form for this case

(where 𝑣 is the velocity of the liquid flowing from the hole)

Cancelling 𝜌 and introducing ℎ = ℎ1 − ℎ2 (the height of the open surface of the liquid above the hole,) we get: 

𝒗 = 𝟐𝒈𝒉
This formula is known as the Torricelli formula (after the Italian physicist 

Evangelista Torricelli, 1608-1647).

Thus, the velocity with which a liquid is discharged from a hole at a depth of h under an open surface 

coincides with the velocity which a body acquires in falling from the height h.

(picture 5)
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PITOT PIPE

Flow velocity and pressure in horizontal pipe can be measured using vertical pipes. The pitot pipe was invented 

by the French engineer Henri Pitot in the early 18th century. Two hollow vertical pipes(picture 6) are placed in 

liquid .The first tube(pitot tube) is bent at  right angle into the fluid , while the second tube is placed vertically into 

the fluid. The moving fluid is brought to rest (stagnates) in pitot tube as there is no outlet to allow flow to continue

(velocity becomes zero). 

However Bernoulli equation for horizontal pipe  states:

Which can also be written:

Solving that for flow velocity:

𝒗 = 𝟐𝒈∆𝒉

(picture 6)

𝑣1 = 0, 𝑣2 = 𝑣

𝑝1 = 𝑝2 +
𝜌𝑣2

2

Since the difference in pressure 𝑝1 − 𝑝2 = 𝜌𝑔∆ℎ

𝜌𝑔∆ℎ =
𝜌𝑣2

2

𝑝1 + 𝜌𝑔ℎ +
1

2
𝜌𝑣1

2 = 𝑝2 + 𝜌𝑔ℎ +
1

2
𝜌𝑣2

2

𝑝1 = 𝑝0 + 𝜌𝑔ℎ1 𝑝2 = 𝑝0 + 𝜌𝑔ℎ2



The Venturi-meter is a device to measure the flow speed of incompressible fluid. The basic principle on which it 

works is that by reducing the cross-sectional area of the flow passage. The pressure difference is measured by 

using a differential U-tube manometer. This pressure difference helps in the determination of rate of flow of fluid. 

As the inlet area (𝐴1) of the venturi is large than at the throat (𝐴2), the velocity at the throat (𝑣2) increases 

resulting in decrease of pressure (𝑝2). By this, a pressure difference is created between the inlet (𝑝1) and the 

throat of the venturi (𝑝2). The manometer contains a liquid of density 𝜌1. 

𝑣1𝐴1 = 𝑣2𝐴2

𝑣2 =
𝑣1𝐴1
𝐴2

…(1)

Then using Bernoulli’s equation for horizontal pipe we get:

𝑝1 +
𝜌𝑣1

2

2
= 𝑝2 +

𝜌𝑣2
2

2 (picture 7)
𝑝1 − 𝑝2 =

1

2
𝜌 𝑣2

2 − 𝑣1
2

FLUID FLOW VENTURI-METER

The speed 𝑣1 of the liquid flowing through the tube at the inlet area 

𝐴1 is to be measured from equation of continuity.:

speed at the throat becomes 𝑣2

Since the difference in pressure: 𝑝1 − 𝑝2 = 𝜌1𝑔ℎ… (2)

𝜌1𝑔ℎ =
1

2
𝜌𝑣1

2
𝐴1
𝐴2

2

− 1
Substituting expressions for 

each of the terms gives:

Solving that for speed 𝑣1 we get:

𝑞𝑉 = 𝐴1𝑣1 = 𝐴1𝐴2
𝜌1
𝜌

2𝑔ℎ

𝐴1
2 − 𝐴2

2 = 𝐶 ℎ

𝑣1 = 𝐴2
𝜌1
𝜌

2𝑔ℎ

𝐴1
2 − 𝐴2

2

The coefficient C is determined experimentally. 

It is called the venturi coefficient.

It follows that the volume flow rate is equal:

𝜌

𝜌1
ℎ

𝐴1
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PROBLEMS

1.Through the horizontal pipe with the varying cross section, flows the water . The volume flow rate of water 

is 10 l/s. Find the difference in the pressure in the wider and narrow part of the pipe if the radius of the wider 

part is 4 cm, and the narrow part is 1 cm.

2.Through the pipe shown in the picture 1, flows the liquid with density 800
𝑘𝑔

𝑚3. Find the difference in the 

pressure between sections 1 and 2 is if the distance between their centers is l=50 cm and the  velocity at the 

section 1 is 2 m / s. Cross-sectional  areas are:𝐴1=5𝑐𝑚2 and 𝐴2=2𝑐𝑚2 .

3.An open tank is filled with water to a height h=1,5m.A small hole (at a height of ℎ1=0,5m from the bottom of 

the tank) is opened up and water begins to flow freely out. Find the horizontal distance traveled by the water 

before hitting  the ground?

picture 1



4. The open tank has two holes makes in the wall, first at a height ℎ1 = 10cm (measured from the bottom) 

and the second at a height ℎ2 =30cm measured from the bottom). At what height h must be the water level 

in the tank, if we want the water jets to steam out of both holes to obtain the same range?

6. Water flows through  the horizontal pipe with varying 

cross section  shown in picture 3. Radius of wider part 

of pipe is 10cm and radius of narrow part of pipe is 5cm.

Find the velocity in narrow part of pipe if ∆ℎ = 25𝑐𝑚
is difference in water level in two vertical pipes A and B.

∆h

A

B

Ԧ𝑣1

Ԧ𝑣2

picture 3

5.The radius of the wider part of the medical syringe is 

𝑟1 = 1cm, and the radius of the narrow part is 

𝑟2=1mm. Find the velocity of the water as it leaves 

the syringe if 10N force act on the piston. (picture 2)

picture 2
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